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Abstract  The direction of max imum shear  stress on any plane can be determined on a normal  s tereogram from 
the orientations and relative magni tudes  of the principal stresses, without having to identify or  evaluate the 
traction vector and without considering the stress ellipsoid. An  analogous procedure is available for determining 
the direction of max imum strain or max i mum strain rate across a plane. 

INTRODUCTION 000 

IN SOME applications, the magnitude of shear stress is of 
importance, for instance in microstructural work. In 
others, the ratio of magnitudes of shear and normal 
stresses may be important,  for example in consider- 
ations of frictional stability. For  such cases, a number of 
methods for evaluating both the direction and magnitude 
of the shear and normal stress components on a general 
plane have recently been described. However ,  there are 
applications in which the constraints on stress magni- 
tudes are very poor. One may wish, for example, to 
consider whether a postulated paleostress regime is 
appropriate to the generation of striae in a given direc- 
tion on a reactivated fault, despite minimal knowledge 
of the frictional parameters.  In such eases it can be 
appropriate to determine solely the direction of maxi- 
mum shear stress on a plane by a method which by- 
passes some of the steps necessary to the evaluation of 
magnitudes. This paper presents a method which re- 
quires neither a determination of the traction on the 
plane (cf. De Paor 1990, Ragan 1990) nor of the V angle 
of the Cauchy ellipsoid (Lisle 1989) as an intermediate 
stage. It involves less evaluation of trigonometrical func- 
tions and a simpler stereographic construction than does 
the method of Means (1989), to which it is most closely 
related. 
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Fig. 1. An  example of a s tereogram (equal-angle, lower-hemisphere) 
to illustrate the procedure,  for the following data: sample plane strike 
050 °, dip 50°SE. Principal stress orientations: Ol azimuth 030 °, plunge 
18°; o3 azimuth 274 °, plunge 55 °. Principal stress values: 01 = 400; 
o z = 300; 03 = 210. In this case, the angle v = - 6 0  ° derived from these 
values would give a direction of V in the upper hemisphere;  so 
v = +120 ~ ( = - 6 0  ° + 180 °) is used instead to plot the opposite direc- 
tion along V at 120 ° from Ol (30 ° beyond 03). From this the  great circle 
through N and V is constructed, giving an intersection with the great 
circle of the sample plane at S, the direction of max imum shear  stress 

on the sample plane. 

P R O C E D U R E  

Step 1. Draw the great circle representing the orien- 
tation of the sample plane and plot the directions of its 
normal, N, and of the Ol and a3 principal stress axes on a 
stereogram (of either hemisphere),  as in Fig. 1. 

Step 2. Measure the angles between N and the ol 
and a3 axes, and evaluate l = c o s ( N A O l )  and 
n = cos(N/k 03), if these are not known. 

Step 3. Evaluate the angle v = a rc t an [ ( ( a3 -  o2)n)/ 
( ( o t  - o 2 ) 0 1 .  

Step 4. Plot the direction V, which lies in the plane of 
ol and 03, at an angle of v from the plotted ol direction 
(positive v towards plotted 03, negative v away from 
plotted 03). If this direction is away from the plotted 
hemisphere, add 180 ° to v first, to obtain the direction 
along V which falls within the plot. 
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Step 5. Draw the great circle containing N and V. This 
intersects the circle of the sample plane at its direction of 
maximum shear stress, S. 

To determine the sense of shear, identify, for each end 
of S, on which side of the sample plane it lies within 90 ° 
of the ol axis and on which it lies within 90 ° of the 03 axis. 
On each side of the plane, the shear stress acts from the 
end of S within 90 ° of the direction of maximum com- 
pression (minimum tension) towards the end within 90 ° 
of the direction of minimum compression (maximum 
tension). 

PROOF IN BRIEF 

A plane with unit normal n experiences traction 
t = orn. Taking the principal stress directions as co- 
ordinate axes, so that tensor o-is diagona!ized, a vector 
v = t - a2 n can be seen to have a component  of zero 
magnitude in the direction of o2 and therefore to lie in 
the plane of 01 and o3. The angle at which v lies between 
these principal axes is given by the arctangent of 
((03 - 02)n3)/((01 - 02)nt), the ratio of its components  
along them. All vectors, including both v and the shear 
component  vector s, of the form t + cn (c real) lie in a 
plane represented by the great circle plotted through the 
directions of any convenient pair of such vectors (n and v 
in our case). S (along s) is the intersection of this plane 
with the plane for which the shear direction is being 
determined. 

DETAILED EXPLANATION 

A more detailed explanation in terms of direction 
cosines and components  may be more intelligible than 
the above. A unit vector may be specified by direction 
cosines (l, m, n) which are the cosines of its angles to 
three orthogonal reference axes and are also the magni- 
tudes of its vector components  in the directions of these 
axes. We will take as reference axes the directions of the 
principal stresses, and take the direction of each axis 
lying within the hemisphere of our s tereogram to be in a 
positive sense. Let the unit vector in the direction N, 
normal to the sample plane and into the hemisphere of 
the stereogram, be (1, m, n) T. The traction vector on the 
plane is (o11, o2m, osn) T. Its direction, which we will not 
bother to determine,  we designate T. 

Any vector which is the sum or difference of these two 
vectors, or any multiple of them, will lie in the NTplane .  
One such vector of particular interest is that having zero 
magnitude for its component  in the 02 direction. This 
vector is obtained by subtracting from the traction 
vector one of magnitude or2 along the plane normal,  N. 
Its components  are 
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Fig. 2. The plane of traction on a sample plane. Directions, labelled 
as in the text by capital letters, are the normal, N, the traction, T, the 
intersection with the ol, a3 principal plane, V, and the shear along the 
sample plane, S. Their corresponding vectors are vector components 
of the traction with the exception of the unit normal n to the sample. 
(a) A perspective view, drawn with the plane of the sample horizontal. 
(b) The geometric relationships between vector magnitudes within the 

traction plane. Underlined letters indicate vectors. 

Its direction, V, lies both within the N T  plane and the 
principal plane containing ot and 03; it is their direction 
of intersection. Its orientation within the 0103 principal 
plane (given as angle v above) can be obtained from the 
ratio of its components  in these directions, which are 
(01 - o2)l along the 01 axis and (03 - 02)n along the a3 
axis. 

The shear stress on the sample plane is the vector 
difference (Fig. 2) between the traction vector along T 
and a different vector (representing the normal stress 
component)  along the plane normal,  N. So its direction, 
S, also lies in the same plane as N, T and V. S also lies in 
the sample plane. Therefore  it will plot on the stereo- 
gram at the intersection of the great circle drawn 
through N and V with that representing the sample 
plane. 

COMMENT 

Apar t  from its practical simplicity, this procedure has 
didactic use in developing an understanding of stress. It 
highlights the distinction between two different three- 
dimensional geometries which we use simultaneously 
when considering stress: 
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(1) a geometric representation of the stress state, 
which has symmetry about its principal planes; and 

(2) the geometry of traction on a generally oriented 
surface. The plane of symmetry of the latter (Fig. 2) 
contains the direction of the traction vector, its com- 
ponent  (the normal stress) normal to the sample surface 
and its component  along the sample surface (the shear 
stress). This method determines the direction V of 
intersection of the traction plane with the o~o3 principal 
plane. In doing so it requires that the conceptual distinc- 
tion be made between these two geometries, and estab- 
lishes that their planes of symmetry are generally not 
coincident. 

This method,  as described, takes no account of the 
polarities of the vectors and axes determined. It would 
be possible to follow these step by step through the 
procedure in order  to deduce the sense of the shear 
along S. Practically it is far simpler to determine the S 
direction first and then use an independent test of shear 
sense, as suggested above. 

The pre-stretch material line along the above vector 
S n  has been transformed by the stretch to the material 
line vector 

m = S S n  = t s1211 [ 1,t 
S22m]=[X2ml=An, 
$32n] 123 n] 

where ~q, ~,2 and 23, the principal quadratic stretches, are 
the components of the diagonalized quadratic stretch 
tensor, A. The shear across the sample plane, referred to 
the strained state, is the angle between its normal, 
represented by n, and the direction of that material line 
which was normal before the strain, represented by m. 
The trace of the plane containing n and m = An on the 
sample plane may be determined by the same procedure 
as described for n and t = o-n in the case of stress, with o 
replaced throughout by 2. On each side of the sample 
plane, the sense of shear is towards the end of S within 
90 ° of the direction of maximum stretch (the 21 or $1 
axis), from the end within 90 ° of the minimum stretch (23 
or $3) axis. 

STRAIN 

The reference state for this discussion of strain is the 
strained state, in which the orientations of any sample 
plane and of the principal strain axes might be deter- 
mined without any unstraining procedure.  For  determi- 
nation of the direction in a sample plane of the maximum 
shear strain across the plane, the directions of the princi- 
pal stretches, $1, $2, $3, in the strained state take the 
place, as reference axes, of those of the principal 
stresses, t71, a2, 03, in the above procedure.  

The effect of the stretch (the irrotational component  
of strain) on the orientation of a sample plane is best 
considered in terms of its reciprocal space vector rep- 
resentation. The orientation of the sample plane in the 
strained state is the same as one which cuts the principal 
stretch axes at intercepts from the origin of 1/l, 1/m and 
1/n, where l, m and n are the direction cosines of its unit 
normal vector n. Removal  of the stretch ('unstraining') 
gives intercepts of 1/$1l, 1/S2m and 1/$3n , for the orien- 
tation of the sample plane in its unstretched state. The 
direction of the normal to the sample plane in the 
unstretched state is given by the vector (not of unit 
magnitude) (Sll, S2m, S3n) T = Sn. (Note that the oper- 
ation of S on the reciprocal space vector, representing 
the orientation of a plane in real space, corresponds to 
the effect of the reciprocal of S in real space.) 

S T R A I N  R A T E  

The analogous procedure for shear strain rate is 
simpler than that for shear strain; no finite rotation of 
the sample plane is involved. As each of the transform- 
ations S described above tends to infinitesimal, so 
(m - n) tends to the differential of An, which is 2Sn. The 
coefficient 2 is of no consequence to the procedure used 
and may be neglected. The trace of the plane containing 
n and Sn on the sample plane may be determined by the 
same procedure as described for n and o'n in the case of 
stress, with o replaced throughout by S. On each side of 
the sample plane, the sense of shear is towards the end of 
S within 90 ° of the Sa axis, from the end within 90 ° of the 
$3 axis. 
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